Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

نویسندگان

  • Waixiang Cao
  • Hailiang Liu
  • Zhimin Zhang
چکیده

This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for one-dimensional linear convection-diffusion equations. We prove, under some suitable choice of numerical fluxes and initial discretization, a 2k-th and (k + 2) -th order superconvergence rate of the DDG approximation at nodes and Lobatto points, respectively, and a (k + 1) -th order of the derivative approximation at Gauss points, where k is the polynomial degree. Moreover, we also prove that the DDG solution is superconvergent with an order k + 2 to a particular projection of the exact solution. Numerical experiments are presented to validate the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2016

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension

In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...

متن کامل

Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations

Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to...

متن کامل

Superconvergence of the local discontinuous Galerkin method for nonlinear convection-diffusion problems

In this paper, we discuss the superconvergence of the local discontinuous Galerkin methods for nonlinear convection-diffusion equations. We prove that the numerical solution is [Formula: see text]th-order superconvergent to a particular projection of the exact solution, when the upwind flux and the alternating fluxes are used. The proof is valid for arbitrary nonuniform regular meshes and for p...

متن کامل

Accuracy enhancement of discontinuous Galerkin methods for stiff source terms

Discontinuous Galerkin (DG) methods exhibit ”hidden accuracy” that makes the superconvergence of this method an increasing popular topic to address. Previous work has implemented a convolution kernel approach that allows us to improve the order of accuracy from k+1 to order 2k+m for time-dependent linear convection-diffusion equations, where k is the highest degree polynomial used in the approx...

متن کامل

Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016